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Abstract We extend our previous derivation of similarity laws in directional solidification 
of eutectics to general non-axisy"e!ric growth patterns. l l i s  involves mathematical 
subtleties which are not enmuntered in the symmetric case. The result explains our 

similarity property of axisymmetric solutions. We find additional scaling relations of the 
form X - V - ' l 2 g ( G / V ) ,  e.g. for the wavelength X of a lilted pattern at &ed tilt 
angle 4 (V is Ihe pulling velocity. G the temperature gradient). Discussing the quatian 
of universality of the sealing function g for different distinguished wavelengths, we are 
led to the prediction that the transition to a parity-broken state takes place at roughly 
twice the selected wavelength of the symmetric pattern for sufficiently large wlocities 
and Ihat the ratio of these wavelengths increases with decreasing velocity. 

obsewation that numerics! w!u!/onS dc?Crihing !i!!Cd P.!CC!/C gmw!h Sh?!r the k S i C  

1. Introduction 

When thin samples of eutectic alloys are directionally solidified, the generic growth 
mode of non-faceted systems is (in a certain velocity and concentration range) the 

The lamellae are oriented (anti)parallel to the pulling direction. Much experimental 
and wme theoretical work has been devoted to this type of lamellar growth. A review 
of the former has been given by Lesoult [l]. The origins of the latter date back to the 
1940s [2,3], and a decisive step forward was taken by Jackson and Hunt [4]. Their 
analysis indicates that steady-state growth should exist in a wide (even unbounded) 
range of wavelengths. In experiments, however, the dispersion of lamellar spacings & 
so small for given external constraints that even the selection of a unique wavelength 
seems likely. Whether this selection is an intrinsic system property or rather depends 
on experimental protocols, is a fascinating unanswered question. A heuristic criterion, 
already given in [4] (and earlier), identifies the operating point of lamellar growth 
with the wavelength at which the average undercooling of the solid-liquid interface 
is minimum. Later, it was attempted [S,6] to justify this criterion on the basis of a 
stability calculation showing that the minimum undercooling point coincides with the 
point of marginal stability of the system. However, this analysis involved simplifying 

foiiiiiitioii of ii psi'iodii iiiizji of iikeiiiztiiig l z i i i e l l ~  0: ihe iiiij d i d  phases (I aiid 0. 
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assumptions which were recently shown [7] to be unjustified, at least in the limit of 
the large thermal gradient to which the latter calculation pertains. This more general 
stability analysis showed that growth patterns are stable in a neighbourhood of the 
minimum undercooling point. 

A full diffusive instability treatment at arbitrary thermal gradient, along the lines 
of similar work on directional solidification of dilute alloys 181, should clearly be 
performed to complete the picture [9]. Moreover, while the minimum undercooling 
criterion seems to work well in general, there has been some experimental evidence 
that it may not be exactly correct [lo]. In view of this unclear situation, it is interesting 
that one can make exact statements about scaling laws for the wavelength selection 
without lolowing the selection mechanism. Recently, we have been able to derive, 
from the full boundary integral equation pertinent to eutectic growth, a similarity 
equation which is valid in the experimentally relevant range of small Peclet numbers 
[11,12]. We showed that the dynamical properties of the system depend on two 
parameters only, U = dol/X2 and x = 1/1 , ,  where X is the lamellar spacing, 1 
the diffusion length and do and 1, are capillary and thermal lengths respectively. 
This implies that the selected wavelength scales as X - V-1/2f(1/lT), wherein V 
is the pulling velocity, from which X - follows eracrly, if the ratio / / 1 ,  (i.e. 
the ratio of thermal gradient and velocity) is kept constant. Assuming the minimum 
undercooling criterion to hold, we furthermore determined the scaling function f 
numerically and showed that at constant thermal gradient X - V-0, where p zz $ at 
large velocity and p decreases with decreasing velocity, in agreement with experiments 

Another recent development is the experimental observation [13] of small domains 
of lilfed lamellae after application of a positive velocity jump. These domains, which 
move transversely along the growth front, were suggested to be localized inclusions of 
a new antisymmetric state [14]. The original untilted state is symmetric with respect 
to the central axes of both the a and p phases. Thus the appearance of tilted states is 
a parity-breaking transition inasmuch as the equations of motion are also symmetric 
under reflection at the symmetry axes. We have shown recently [15] that indeed 
the fully isotropic model of eutectic growth supports solutions with broken parity 
symmetry. In addition, we determined that the bifurcation to these non-axisymmetric 
states is of standard supercritical type, which led us to predict that on application of 
a sufficiently large velocity jump (by a factor of 4 or so), the tilted domains would 
invade all the space of the sample [16]. This prediction has meanwhile been confirmed 
experimentally [17]. 

We found numerically [ l l ,  121 that similarity holds for tilted solutions as well 
as for untilted ones. However, our previous derivation of the similarity equation 
critically depended on the axisymmctry of the pattern. Without this axisymmetry, a 
certain integral would have diverged when its integrand was replaced by its small 
PCclet number limit. 

The purpose of the present paper is to show how this problem can be resolved, to 
derive the similarity equation for tilted, i.e. non-axisymmetric patterns, and to discuss 
its physical consequences. The derivation involves some mathematical subtleties rarely 
encountered in physics where things tend either to converge uniformly or to need 
renormalization. Here, none of the two cases applies. Nevertheless, the limit P + 0 
(P: Pkle t  number) of the boundary integral equation can be performed exactly. 

In the next section we give the model equations and reduce them to a form which 
is suitable for similarity considerations. Section 3 contains the derivation of the sim- 
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ilarity equation, with some of the mathematical details relegated to the appendices. 
In section 4, we demonstrate the similarity properties explicitly for the growth mor- 
phology as well as the average undercooling and the tilt angle. Section 5 summarizes 
a few conclusions. 

-. 2. T h e  - .._ mndel .-. --. 

As usual, we assume that thermal transport processes are much faster than chemical 
diffusion, with latent heat production being negligible, and that thermal conductivities 
are the same in all three phases, i.e. heat diffusion proceeds symmetrically [NI. The 
first assumption allow us to decouple the thermal and chemical diffusion problems, 
the second renders the thermal problem trivial in the conventional directional solid- 
ification set-up [12]-the temperature profile is linear with a constant temperature 
gradient G. So we are left with the chemical problem. In order to describe its 
basic features we give the phase diagram in figure 1. Assuming vanishing (chemical) 
diffusivity in the solid@), i.e. considering the one-sided model, we can reduce the 
description to a single concentration c ( T , ~ )  in the liquid, for which we choose that 
of the major component of the p phase (see figure 1). After introduction of a di- 
mensionless concentration field u ( ~ ,  t )  = ( ~ ( 7 ,  t )  - c e )  /Ac-for the definitions of 
ce and Ac see the figure-the equation of motion for stationay growth reads, in the 
frame of reference which is attached to the interface: 

Herein, 1 = 2 D / V  is the diffusion length; D the diffusion coemcient in the liquid. In 
writing the equation, we have taken into account the experimental fact that patterns 
with broken parity drift laterally with constant velocity V t a n  4. The tilt angle 4, a 

m I 

- Ac 
Flgure 1. Generic phase diagram of euleclics. T is the lemperalure. c lhe mncenlraiion 
of one mmponenl. Thc regions L .  a. and 0 mrrespond to one-phase equilibrium staim 
of the liquid, the solid a and the salid p phases respeclively. L + a and L + p are of 
No-phase equilibrium klween the liquid and one solid phase; the true concentrations 
of the WO phases are given by the liquidus and solidus lines (full lines) delimiting these 
regions. cc, co and e p  denote the equilibrium wncentralions of the liquid and Ihe WO 
solid phases a1 the triple or eutectic poinl; A e  is the miscibility gap: Ac = cg - e,. 
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priori unknown, obtains from a solution of (2.1) with all houndaly conditions, and it 
has been shown [15,16] that there exists only a discrete set of solutions for 4. When 
cast into the form of a boundary integral equation, the equation of motion of the 
system becomes 

K Kassner and C Misbah 

where U, = ( c ,  - ce)/Ac is the reduced concentration at infinity (taken constant). 
The integration contour r,, runs along the liquid-solid interface-see figure 2 We 
have restricted ourselves to ID deformations, so g ( r , r ’ )  is the 2~ Green function 
(for natural boundary conditions) corresponding to the differential operator acting on 
U(T) in (2.1). It is given by 

w h e r e r = ( z , C ) , r ’ = ( z ’ , C ‘ ) , A z = x - - ’ , A C = C - - C ‘ , a n d p =  JAz2+ACZ. 
Because T’ is restricted to the interface, C’ is a (not necessarily single-valued) function 
of z’: C’ = ((a?’); I<, is the modified Bessel function of zeroth order [19]. Finally, 
h ( r , r ’ ; n ‘ )  is an expression involving the normal derivative of g ( r , r ’ ) :  

1 
2nl 

h ( r , r ‘ ; n ‘ ) =  - e x p [ - ( A C + A z t a n b ) / l ]  - (n:+nLtan4)rio 

(2.4) 

where n’ = (n;,  n:) is the normal vector at r’ pointing from the solid into the liquid 
(see figure 2). IC, is the modified Bessel function of first order. The 6 function is 
lD, i.e. it is defined via a contour integral, not (as usual) a (2D) volume integral. The 
prefactor c7 of the 6 function is 4 if the interface is smooth at r ;  for more details 
see [20,21]. 

Flgure 2 Definition of the mntour of integration 
r,l and the direction of the normal vector rz on i t .  

Figure 3. Definition of the mntact angles ff,, 
and the tilt angle 4. Note that + is munted positive 
for a t i l t  to the right, while 8, and f f p  are always 
psilive. 
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The physical boundary conditions of the problem are provided by the Gibbs- 
Thomson condition, the continuity equation and the mechanical equilibrium condi- 
tions at the triple points. Assuming that the interface. kinetics are instantaneous on 
the time scale of the diffusion, we take the interface to be at local thermodynamic 
equilibrium, which means, in particular, that it is microscopically rough. Then the 
Gibbs-Thomson condition tells us that, at the interface., 

- c / l $  - d;n Q phase 

C/$ + dfK 
U = {  p phase. 

In these equations, C is the z coordinate of the liquid-solid interface and I( its 
curvature, taken positive where the solid is convex; 1;'' are the thermal lengths, 
given by l& = m,Ac/G, where mi ( i  = a, p) is the absolute value of the slope Of 
the liquidus line describing coexistence of phase i and the liquid (figure 1); db are 
the capillary lengths: db = yirTe/LimiAc, where yiI is the liquid-solid-i interface 
teasion, Te the temperature of three-phase equi!ibrium, and the L ,  are effective 
latent heats per unit vo1ume.t. All surface tensions are assumed to be isotropic. 

Mass conservation for fluxes to and from the interface is written as the following 
continuity equations: 

[ ( I  - k,)u + 61 U,, 
[(I - k p ) u  + 6 - 11 U" 

a phase 
p phase 

- D - =  

where 6 = (c, - c,)/Ac is the reduced miscibility gap of the a phase, 1 - 6 that 
of the p phase and k,, kp are the partition coellicients. For our 'linearized' phase 
diagram, these are simply the ratios of the constant slopes of the respective liquidus 
and solidus lines (figure l)t. The normal velocity U" of a stationary tilted pattern is 
given by 

Finally, imposing mechanical equilibrium at the triple points, we obtain 

yo, sin(fi, F $1 + yol 

yOl c o s ( f i ,  i 4 )  - yol cos(f io * 4 )  = fy,p sin 4 

* 4 )  = cos 4 

(2.8) 

t The lalent heals that enter the definition of the capillary lengths db are not aacl ly thaw of the obiquid 
and Pbiquid lransilions, bul effective quantities. l h i s  can bc seen 5 following Ole derivation given in 
1221 for a quasi-azeolrape. ?here the elfeclive heal of lmnsilion reduces lo the lalent heal only because 
the concenlrations of the solid and liquid phases are equal 81 the azeolmpic p i n 1  (which is  no1 lhc case 
for eutectics). 
t Nole that equations (2.6) are a simplification of the exact mas  conservation equations for a non- 
dilntc sptc-. !~dceG, the !e:ms ic q u a r t  bmche!s mug! k undentood as = I ? .  \ - I  - cs,), : = ",*. - n 
Thermodynamic equilibrium at the front imposes that (see 1221) (cs,  - c i )  = k,(ch - c.) + d:(il where K 

is the front curvature. The capillary length dg, which vanishes for dilule alloys, turns OUI IO be negligible 
for eutectics with small temperature gaps (miAc,). This is the case for lhe c B r 1 4 C l ~  eutectic in 
which we are interested here. W should. however, keep in mind that there are some eulectics for which 
d; is no1 small. especially due IO a large temperature gap (e.g. Pt-Sn). 
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where 29, and 2 9 p  are the mntact angles-see figure S a n d  the upper signs hold for 
the triple point to the left, the lower ones for that to the right of the o phase. The 
mntact angles are uniquely determined by the surface tensions. The pinning angles, 
which are measured from a baseline parallel to the z axis, then take on the d u e s  
29, 

Because the boundary conditions determine, in terms of C(z'), both u(T ' )  and 
&/an' in (2.2). the integral quation-with T taken to the interface-mutitutcs a 
closed functional equation for the solidification front C(z)- or the contour rs,. 

Since we wish to detect similarity properties of the pattern, including geometric 
similarity, we rewrite the integral equation and its boundary conditions in dimension- 
less form, with lengths measured in units of A. The eutectic problem contains six 
length parameters, namely the periodicity X of the pattern, the diffusion length 1, two 
capillary lengths d; and df and two thermal lengths 1F and 1:. For a given material, 
the ratio of the two capillary lengths and that of the thermal lengths is constant under 
most variations of the experimental conditions. This means that there are actually 
only four relevant (i.e. dynamically variable) length scales, which on introduction of 
dimensionless ratios reduce to three parameters, for which we choose P = A / /  (the 
Peclet number), U = d ; 1 / A 2 ,  and x = / / I $ .  We will show by derivation of the simi- 
larity equation that for small P all system properties depend only on two parameters, 
i.e. P scales out of the equation. 

'Ramforming equation (2.5) to length units of X (replacing T with T A ,  K with 
./A), we obtain 
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4 and B p  k 4 respectively. 

U = - P € ( Z )  { X < ( Z )  + $ ( Z ) U K ( Z ) )  pa(Z) (2.9) 

W k I P  

1 a phase 

[ - / ; / l g  p phasc 
€( x) = 

and 

(2.10) 

(2.1 1) 

are piecewise mnstant functions. For definiteness, we choose the origin of the z axis 
to align with a triple point to the left of an a phase lamella, i.e. the z coordinate 
of the a-l interface runs between 0 and ze, which is the abscissa of the triple point 

then has z E [z,, 11. Note that does not explicitly depend on P but on x and U 
only. Using n, = -C,n,, where C, = a ( / a x ,  we obtain the transformed continuity 
equation ( a / a n  - A - l a / a n )  

a n  

ta the right af the !"!!a; the 9-! htecfacc bebnglng tn the Sam$ pe_riad_iriq unit 

a u  - = -[[I - ~ c ( z ) l ~ ? i ( z )  + ~ ( z )  2 ~ n ~ ( 1 -  C, t a n  4 )  (2.12) 

with 

(2.13) 
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and 

a phase 
p phase. 

H ( x )  = (2.14) 

Inserting (2.9) and (2.12) into the integral equation (2.2) and employing d d  = dr'n:, 
we arrive at the following form of the integral equation: 

iL(2) - U ,  1 
d z ' e x p [ - P ( A C + A z t a n + ) ] ( l  -C, , tan+) 2 

x 2 H ( z ' )  + (1 - 2 k ( z ' ) )  PG(z') KO P- [ I ( c:+) 

x Kl ( P P )  cos q4 . (2.15) 

In order to move U, in front of the integral terms, we have made use of the sum 
rule 

which has been derived in various contexts [16, U]. 
Equation (2.15) is our starting-point for the derivation of the similarity equation. 

3. The similarity equation 

lb obtain the similarity equation we must perform the limit P - 0 of the integral 
equation (2.15). This limit is not uniform which makes the task non-trivial. We 
consider the two integrals in (2.15) separately: 

x [ 2 H ( z - y ) + ( l - 2 k ( z - y ) ) P G ( z - y ) ]  ( 3 4  

In these equations,-we have introduced a new integration variable, y = 2: - d ,  and 
the abbreviations P = P/ cos  and P = P tan 4. Obviously, p 2  - P z  = P 2  and 

> P .  This inequality ensures the convergence of both integrals even at the lower 
integration bound where e - p y  blows up, because the asymptotic behaviour of the 

Bessel functions for large arguments ( I < , (  pp) - e-'+') I191 guarantees 
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an exponentially decaying integrand ( p  = d m  > lyl). Despite the singular 
behaviour of K ,  at y = 0 (Iil(Pp) - l/Pp) [19], the integral 1, is convergent 
there because 

(3.4) 

which is finite. Note that if z is the coordinate of a triple point, the right-hand 
side expression has to be replaced with an appropriate left-sided or right-sided limit, 
which means that the integrand has a jump discontinuity, i.e. it remains integrable. 

These considerations suggest that limp-, I ,  might be calculated by taking the 
limit inside the integral, a procedure which would be correct if the integral were 
uniformly convergent as a function of P. However, this is not the case. The most 
slowly decaying term of the P - 0 limit of the integrand is 

The integral of this quantity diverges, in general, at the lower and upper integration 
bounds. In [12] we showed that it is convergent for axisymmetric profiles, because 
then CyC is an odd function with respect to the symmetry axes, whose integral over 
one period vanishes. In that case 1, could indeed be shown to converge uniformly 
[U]. Note that by reinterpreting the formal expression I , ( O )  (meaning I, with the 
integrand replaced by its P - 0 limit) as a principal value integral, J-", d y  . . . - 
IimR-- J-R d y  . . . , convergence is re-established for arbitrary profiles C(z - y),  
because the dangerous contributions of the even part of Cyii at the lower and upper 
boundaries cancel each other out. Nevertheless, this does not reinstate uniform 
convergence, Le. for non-axisymmetric profiles we have limp-, I , (P )  # I,(O). 

In order actually to calculate the limit we have to split the integral into uniformly 
mnvergent parts and a part which can be computed explicitly. First, we introduce a 

R 

few abbreviations: 
1 

277 
1 

2rr 

Fp(y)= -CPAC A < i i ( z - y )  

gp( y)  = - e-pA( <, ii( z - y) 

I 

3~ = (gp(Y)) = 1 d y g p ( y ) .  
0 

Both functions are periodic with period 1. We then have 

with 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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where we have to take all integrals as principal value integrals, because other- 
wise the g p  terms diverge at y = 0. ?b be precise, we defined $-", d y  . . ' = 
lim 

In appendix A we show that both I , ,  and Izb  are uniformly convergent which 
leads to 

( JI: + JEW )dy . . . 

m 

lim I2b = IZb(O) = f d y  Ygo ($ - $) 
-m P-0 

where the small argument expansion of I<, has been used. Furthermore, we prove 
that 

(3.14) 

(3.15) 

which immediately yields 

- -7rP 
I 2 c - S p  - P- p p  = -T tan Ojyp (3.16) 

and hence 

lim 1 2 c ( P )  = -rr tan +go = dy Cy G(z - y). (3.17) 
P-0  2 

Adding all three terms together, we arrive at 

(3.18) 
Y 

lim I,(P) = f m  d y  { - 
P-0 -m 2rr p2 

Now the second term in the integral is a n  odd function, which only serves to cancel 
the divergence of the first term at large values of IyI. On reinterpretation of the full 
integral as a different principal value integral we can simply omit that term. Defining 
fym dy . . . = limR-m s_", d y  . . . we obtain 
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All of these functions are periodic with period 1. They depend parametrically on z, 
actually being functions of 1: - y, but only L ,  depends on P explicitly. Again we 
split off a uniformly convergent part by writing 

K Kassner and C Misbah 

= I l m  + l l b ( p )  + (3.23) 

(3.25) 

(3.26) Ilc = 2j7Lm d y [ P G ( y )  + 2 f i ( ~ ) l e - p ~ I ~ ~ ( ~ l ~ I ) .  

The proof that I,, is uniformly convergent is completely analogous to that given for 
I,, in appendix k This allows us immediately to write down the limit 

1 m  

(3.27) 

where the logarithm comes from the small argument expansion of Ii, [19]. 

L ,  into Fourier series: 
Here, I,, and I,, are evaluated by expansion of the periodic functions G, fi and 

m 

G ( y )  = b,e-'2""Y 
n=-m 

(3.28) 

(3.29) 

m 

Lp(y)  = d" (  P ) e - ' 2 s n y .  (3.30) 
n=-m 

The basic integral needed is equation (A.14) of appendix A. 

- 
112 (3.31) - 

( ~ ~ - ~ ~ i r n P + 4 n 2 n ? )  

- y p  tor n = 0 
P-0 1/21nl for n # 0. 

The integrals are sufficiently well behaved to allow the commutation of the order 
of integration and the summation on 1 1 .  Furthermore, the limit P - 0 may be 
performed term by term on the resulting sums (this is easy to see for the sums 
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containing the coefficients b, and c ,  and requires a little more effort for d n (  P)). 
We then arrive at 

(3.32) lim I l b ( P )  = lim - d O ( P )  
P-0 P-0 2 P  

(3.33) 

and all that remains to be done is the evaluation of the Fburier coeficients plus a 
discussion of the apparently divergent terms of order 1 / P  in (3.1) and (3.33). 

We have 

(3.34) 

(3.35) 

- - ~ 7 -e + 6 - 1 + ta.E 4 [C(O) - <(.,)!. (3%) 

In the last calculation we have switched back to a description in terms of z’ = z - y, 
using the periodicity of the integrand to keep the integration bounds at 0 and 1 as 
well as to evaluate the integral. It can now be shown (see appendix B) that for tilted 
growth the volume fraction q of the a phase is (in our reduced units) given by 

.q = ze -+ t a n  4 [((O) - <(ze)j < 3 3 j  

and hence 

co = 6 + 7 - 1 (3.38) 

formally the same as in the axisymmetric case, but with a quite different definition of 
1) in terms of the geometric quantities ze and <(z,j.  We proceed with ihe caicuiaiion 
of the sum on n in (3.33): 

(3.39) 
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where we have used C:=lcosnx/n = - ln (2s inz /2 ) ,  for I E ( 0 , 2 r )  (no 24, 
p 656 in [24]). Note that the logarithmic divergences at y = 0 and y = 1 are 
integrable and that we introduced the absolute value to keep the periodicity of the 
integrand equal to 1, allowing later a shift of the integration boundaries (to arrive 
at equation (3.43)). In fact, there is a different, more familiar representation for the 
first term (not containing Cy) of the integral, allowing its explicit evaluation. This 
leads to 

K Kassner and C Misbah 

1 
(3.40) 

Finally, we collect the terms which are of order 1/P (namely u m / P  and c,/P). 
Global mass conservation ensures that their sum is finite in the limit P - 0 and we 
show in appendix B that it is given by 

1 - - tan + d y C, H( 3c - y) ln(2 Isin ?iyl). 
7r 

Note that this term when added to b,/2 (equation (3.35)) cancels the explicit depen- 
dence on IC( 2: - y). 

Collecting all terms from I, and I ,  we obtain the full similarity equation: 

1 

- !.tan 4 1  d y  C,G(r - y).  (3.42) 

As it turns out, there k another cancellation, namely of the last term (stemming 
from /2c) and the tan + term inside the third term on the right-hand side (stemming 
from the b,/2 term of /,c). In order to make the parameter dependence explicit, we 
rewrite (3.42) with 6 replaced by its representation in terms of interface coordinate 

2 
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and curvature (2.9). Furthermore, we return to the old integration variable d. Thus 
we obtain as final, explicit form of the similarity equation: 

1 

- dz'OC(1- Cz, tan+)N(r ' )  

+ la dz' (1 - cn, tan 4)  H (  a') In I la4 
-a P 

For d, = 0, this equation reduces to the similarity equation of axisymmetric growth 
given previously 1121. In particular, the principal value integral becomes an ordinary 
improper integral. 

In the following section, we will discuss some consequences of the Cull equrtion. 

4. Consequences of similarity-scaling laws 

The numerical method to solve the boundary integral equation (2.15) has been de- 
""b w11, ,,"I L c p c L L L  ,,I'.L Yc""'y""" Z 1 C . C  " Y ,  ,, .... (,,, 

discuss the results. For simplicity, we will assume in [he following that there is only 
one thermal length 1, (= I+ = I $ ) ,  which does not restrict the general validity of our 
results. The discussion will be given in dimensionlcss units; cor a detailed explanation 
of the conversion to physical units see [12]. Suffice it here to say that the time scale 
is set by the diffusion constant D which we always take equal to 1, while the length 
scale is determined by specification of the thermal (or any other) length. 

The most immediate consequence of the similarity equation is that any dimen- 
sionless quantity depends on the two parametcrs r and only. Therefore, the most 
direct way to check it consists in a comparison of numerically computed interface 
profiles, Cor which some of thc model parameters arc varied while their combinations 
U and x are kept constant. Figure 4 serves to provide such a comparison on the 
basis of an integration of the full boundaly integral equation (2.2). 

In the left-hand panel, 17 profiles are displayed which correspond to velocities 
V between 3.5 and 30.0, while U and all other parameters, including thc thermal 
gradient C, are kept fHed. If the selected wavekngth in tilted growth conforms with 
the conventional scaling X - 1 / -1 /2 ,  rhjs will correspond (because U is proportional 
to iixzvij to the usuai situation oi an experinii-iti in which simp$ iQi- puDiiig speed 
is altered and all other controllable parameters are held at LYed ValueS. 

By contrast, in the right-hand pancl the thermal gradicnt was chdngcd along with 
the velocity so as to keep constant as well. Contrary to all appearance, It is not 

zi&=d k, ditai; [ ;2 ,  ;5;, llln ..I1 -,.+ .n_po+ +hi,+ r l n c r r ; - t i f i n  horn h i s +  c;mnl.r 
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I I I I 
-1 0 1 2 

I 

x/h 
- 1  0 1 7 

x / h  

Figure 4 A sequence of numerically ralculated interface profiles. me velocities a n  
be read off figures 5-7. Ihe material parameters are: D = 1 (sea lime scale), 
do" = 2 x IO-', d{ = 5 x lo-*. I ; ,  = 0.99, k8 = 1.01, uoc. = 0 . 0 5 .  6 = 0.3,  
8, = 0.9 = 51.6'. 98 = 0.7 = 40.1'; I T  E IF = I! in bath panels of the figure; X 

on the right-hand side IT is varied proporlional io 1 (3 

tC \-.i-A nl*h *I,", ,211  = -̂ ...̂ "l cyII.,yI,,, (* d = mns;an;j. Gn ihe :e:i-:land side iT 7 i ,  
Y .".,&" "".,. ,,,'., " 

= constmi). 

just one or two profiles which are  plotted on the right-hand side of figure 4 but their 
number is also 17. (That it is larger than 1 may be guessed by careful inspection 
of the figure, because the line thickness increases towards smaller z values due to 
slightly different tilt angles.) Amazing as it may seem that so many different profiles 
covering a rather large velocity range are (almost) identical, this is exactly what is to 
be expected from the similarity equation. Geometrical identity holds when lengths 
are measured in units of A,  which means that the true physical patterns are similar 
to each other with the scale factor given by A.  

I I I I I 

5 10 15 20 25 30 
..-,--:1.. 
V c l V c I L y  'v' 

Flgure 5. Verlial psi l ion of one lriple poinl (the onc to Ihe right of Ihe a phase) 
and avenge vertical position of lhe interface as functions of velocity. %angles: average 
psilion; cirfles: psilion of lriplr p int .  Full symbols: (a, I T )  = conslant (lefl-hand 
panel of figure 4); open symbols: ( 0 ,  s) = conslant (right panel). 
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Figures 5 and 6 make the comparison more quantitative. In figure 5, we plot 
C,, the z coordinate of the eutectic point, as well as (C) = A-'  J d z  C(z), the 
average z coordinate of the profile, as a function of V. The average undercooling 
iS related to this quantity by (AT) = -G(C). Whereas for fured thermal length 1, 
(i.e. constant gradient C) both reduced quantities show a (strong) linear dependence 
on the velocity, they remain constant (within our numerical accuracy) in the whole 
velocity range when U and x are kept fixed. 

z v 9 j-1 ..A ":i .I I , , , , 1 
6 

5 
.A 
t' 

10 20 30 
velocity V 

Flgurr 6. Tilt angle as a function of velocity. The triangles mrrespond lo lhe lefl-hand 
side of figure 4, the squares to the nghl-hand side. 

Figure 5 yields, on a quantitative level, the relative displacement of the profiles 
given in figure 4, with respect to each other. In figure 6 we investigate the change of 
the tilt angle along the sequence. Here we do not have to go to reduced quantities, 
since the tilt angle is dimensionless by itself. Again the numerics confirm our expec- 
tations from the similarity equation: with constant U and x the tilt angle remains 
constant under a variation of the velocity, while it decreases with decreasing velocity 

This result is well suited for experimental verification. Here, x is essentially 
determined by the ratio of G and V; both quantities can be easily controlled in 
experiments, thus keeping x f ied  while varying V does not pose a specific challenge. 
Proposing this experiment, we predict 4 to remain constant ovcr a wide range of 
growth velocities. Especially at small velocities, the different outcomes of the two 
experimental protocols corresponding to the left- and right-hand panels of figure 4 
shbuld be easily distinguishable. 

The final geometric quantity that we consider is thc lateral position z: of one of 
the eutectic points (figure 7). (Notc that the coordinatc system in the numerics is such 
that z: is related to ze of equation (3.37) via .:/A = ze - f . )  Here we cannot really 
claim for either of the two cases that there is no variation under velocity change, 
because even though the total variation is smaller than 3% in the second case, a 
clear systematic trend is visible-we have a roughly linear (albeit weak) dependence 
of .:/A on the velocity. This can be understood as follows. The similarity equation 
(3.43) is the exact P -, 0 limit of the integral equation (2.15). For non-zero P,  
global mass conservation (3.41) requires a (weak) dependence of 7) and hence of I, 

5 the or.linrq experimefitr! ait.ati!X. 



3228 

and 2: on P-which must of course be seen in any exact numerical solution of the 
problem. It can be reintroduced (or kept) in the similarity equation by taking into 
account equations (3.37) and (3.41) in the determination of ze. This quantity appears 
not only 'explicitly in the similarity equation but is also hidden in the integration 
boundaries because the integrands differ in the different phases (see the discussion 
of equations (2.9)-(2.14)). The influence of this first-order effect in P can be safely 
neglected for most quantities because the parameter dependence of TJ is very weak. 
However, since I, is very closely related to 77 (in the limit of vanishing tilt angle, they 
are equal), the residual P dependence and the ensuing velocity dependence show up 
more strongly in this quantity than in others. But the dependence on the velocity is 
much weaker than for the ordinary experimental situation of constant U and 1,. 

Even more interesting than geometric similarity properties of the growing crystal 
are new scaling relations that follow from similarity. We have already shown pre- 
viously for axisymmetric growth [12! that any wavelength selection mechanism, no 
matter how it operates, leads to a relation between x and U which can, without 
restriction of generality, be cast into the form 

K Kassner and C Misbah 

Oi 

(4.1) 

Of course, this result carries Over to the non-axisymmetric case without any change. 
That is, whatever the selection criterion in f i k d  growth (about which there is little 
experimental information), at constant ratio C/V the selected wavelength will be 
proportional to V-'/* because of equation (4.2)-and therefore U has to be constant 
in the proposed experiment on the tilt angle as soon as s is futed. The scaling 
function g may of course be different from the one we determined for axisymmetric 
growth [12]. This issue will be taken up again below. 

Furthermore, similarity tells us that the tilt angle depends on two relevant pa- 
rameters oniy, @ = @ ( U ,  x), ana from the bifurcation diagram ji6j we .know tinat, 
for non-zero 4, the value of Q determines the wavelength at given velocity and vice 
versa. Fixing 4 we therefore obtain, by virtue of the theorem on implicit functions, 
a functional relation between o and which again takes thc form of equation (4.1) 
or (4.2) (for 4 = 0, the derivative of 4(u, s) with respect to either of its arguments 
becomes zero, rendering the theorem inapplicable). Let us apply equation (4.1) to 
chis Plse 22 fn!!nws: 

(4.3) 

where the subscript '4 denotes the furcd value of 4. 
The question arises then whether the scaling function f is universal in the sense 

that it is the same, up to a constant factor, for different distinguished wavelengths. 
As an example, we can compare the scaling function obtained for the minimum 
undercooling wavelength [I21 (of axisymmetric solutions) with f, for any desired 
angle '4. This comparison is performed in figure 8. In the vicinity of the critical 



Similariry equalion in eutectic growth 3229 

' - U  4 .I2 .14 r; 
t .io 3 . . . . . . .  . . . . . . .  

?c 
1 .  

, m , . , , . . . . . . l . n  

I 

10 20 30 
velocity V 

Figure 7. laieral mordinale of lhe triple p i n t  on the righl side of the a phase (the 
mordinare of the left triple pin1 is fired tn -0 .5A)  as a f~iaclion of velocity. ?he 
triangles correspond to lhe left-hand side of figure 4, the squares 10 Ihe right-hand side. 
AI the p i n t  o f  inlenrction IT = 1 . O .  

I '  
I I I I 

-0 .6  1 
-+ -1.0 

y -1.2 
v 

3 -1.4 t 
-1.6 . . . . . . . . . . . . . . . . . .  
-1.8 

I I I I I 
-0.5 0.0 0.5 1.0 1.5 

ig(veiocity vj 
Figure 8. Scaling function f(l/lT) = as a function o f  lhe Velocity in double 
logarithmic representation. Squares: X = XO,, (see texl); Iriangles: X = A m i n .  ?he 
triangles correspond IO misymmelric pallerns (the dala are identical IO that of figure 14 
in [12]). For b t h  NIVCS, the velocily is prescribed and X is calculated, eilher from the 
condition 4 = 0.1 or from lhc rcquiremenl that the average lindercooling be minimum. 
Malerial parameten: d ;  = d{ = , Io - - I s  - - 1, res1 as in figure 4. 

wavelength A, of the parity-breaking transition the tilt angle increases strongly with 
increasing wavelength [16] (the bifurcation is said to be very stiff), so our choice of a 
rather small angle @ = 0.1 (=z 5.7') means that A, is close to A,. Numerically, it is 
much simpler to scan a sequence of solutions with a k e d  tilt angle than directly to 
determine tne criticai point. An accurate caicuiation of the iatter wouid require the 
computation of a sufficiently large set of profiles with decreasing tilt angle, while the 
former calculation can be done with one profile per data point by a simple change 
of the variables for which the Newton iteration scheme [16] is trying to solve, for 
example by taking X as a variable instead of 4. 
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The figure shows the non-universality of the scaling function f. Indeed, while 
fo.,, (and any f+) is increasing for decreasing velocity, the scaling function for the 
minimum undercooling wavelength, let us call it fmin .  is decreasing. Whereas we do 
not have any deeper insight in the behaviour of fmi, (which is, however, in agreement 
with experiments [16]), it is quite easy to understand the dependence of fs on V. 
We know that the tilt angle is constant, if U = 2d:D/XZV and x = I/IF are kept 
constant. If we now start with 4 = @ at a high velocity and decrease V (i.e. increase 
I) while keeping U and I, constant, the corresponding change of f*(x) is equivalent 
to one obtained by keeping 1 constant and decreasing 1, (or increasing the thermal 
gradient C). But to increase the temperature gradient means to counteract the tilt 
of the pattern, i.e. the tilt angle should decrease. (It is known that there are no tilted 
solutions for large thermal gradients 1251.) This decrease in turn can be redressed (at 
tixed velocity) by an increase in A. But then we can keep 4 constant (at b e d  1,) by 
simultaneously decreasing V and increasing X such that X2V increases (because X 
must be larger than for constant U), which means that fa has to increase. No simple 
arguments of this kind are available for the bottom curve of figure 8. 

For the ratio f0 , , / fmi , ,  which is identical to the ratio of the corresponding 
wavelengths, we obtain & / A m t n  = 2.0 at large velocities (V o 30), while for 
V < 1 we have Xo,l/Xmin 2 4.3 and the ratio already exceeds 11.8 at V = 0.5. 

We suggested previously that an experimental procedure to obtain extended do- 
mains of parity-broken states would be to apply a sudden velocity jump by a factor 
of the order of 4, because then the temporary wavelength after the jump would he 
by a factor of % 2 larger than the selected wavelength of a symmetric pattern (corre- 
sponding to the final velocity) and hence a tilted state would easily form. Our present 
result shows that this holds quantitatively only if the final velocity is large enough. If 
we were to try and priduce tilted solutions a t  parameters corresponding to figure 8 
and a final velocity of 1, we would need a factor of 4 in wavelength, Le. an initial 
velocity which is smaller by a factor of 16! It is easy to imagine that with factors of 
this order (and beyond) the limits of experimental feasibility will soon be reached. 
Nevertheless, because is close to the critical wavelength A, for the appearance 
of tilted solutions, this type of experiment would seem suitable for constructing an 
estimate for the top curve in figure 8, which is probably not directly accessible in 
experiments. 

In fact, while the bottom CUNC of figure 8 can be measured with little difficulty 
(as long as the minimum undercooling criterion gives a good approximation to the  
selected wavelength), the only way to fuc the tilt angle experimentally seems to he 
to exploit the similarity equation. But then the experiment would be run with XzV 
= constant and C/V  =constant, which is not along the top curve of figure 8 (since 
f which is essentially o-ij2 is not constant). In view of the fact that the selection 
criterion for the tilt angle is unknown (for a conjecture see [16]), it is not clear (and 
seems rather unlikely) that it is possible to follow that curve ‘adiabatically’. As to the 
numerics, the situation is the reverse: it is much harder to compute the bottom curve 
than the top one. 

In spite of these restrictions it should he possible to chcck the general statement 
experimentally: the ratio of the critical wavelength Cor the tilting instability and the 
selected wavelength of an axisymmetric pattern at the same velocity should increase 
with decreasing velocity. 

Note that it seems likely from these considcrations that the scaling function for the 
selected wavelength in tilted growth also differs from that for the selected wavelength 
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in untilted growth, although we have not proved this. We did not try to calculate 
that scaling function; for apart from our conjecture in [16] we have no clue what the 
selection criterion might look like and so any determination of the scaling function 
would have to be based on mere speculation. However, if that scaling function were 
simply proportional to fmjn, the selected tilt angle at high velocities would become 
extremely large. Indeed, the wavelength of a selected state with non-zero angle 
at low velocities would have to be larger than A,; since the scaling function for A, 
decreases with increasing velocity, while that for the selected wavelength was assumed 
to increase (because of the supposed proportionality to fmi,), the ratio of selected 
and critical wavelength would have to increase with increasing velocity; depending 
on the velocity threshold (if any) above which a tilted solution exists it could easily 
exceed 10 (see figure 8). Factors of this order would lead to large selected tilt angles 
(close to 90'). for which there is no experimental evidence. 

5. Conclusions 

The main result of this paper is the constructive theoretical proof (by its derivation) 
that there is a similarity equation in lamellar eutectic growth, whether or not the 
basic stationary patterns are symmetric. This was not dear to begin with since our 
previous derivation needed the symmetry property. 

A first step in deriving a similarity equation for non-symmetric patterns was to 
see whether the limit P i 0 could be performed despite the apparent divergence 
of one of the considered integrals; in a second step it had to be recognized that 
the mathematical structure of the problem did not allow negligence in questions of 
uniform convergence. Carelessness would he penalized by the loss of terms that are 
needed in the final equation to cancel other terms. Since the necessity for this kind 
of mathematical rigour is rarely met in physics, this is an interesting feature in itself. 

The form of the new similarity equation is considerably more complex than that 
of the old one. For 4 = 0, the old equation is recovered. 

The existence of a similarity equation for general stationary patterns provides the 
theoretical foundation of our earlier discovely [ l l ,  161 that exact numerical solutions 
of the basic integral equation (2.2) exhibit similarity properties for tilted patterns as 
well as for untilted ones. 

We suggest hvo experiments to verify the consequcnces predicted by the similarity 
equation: 

(i) to monitor the tilt angle as a function of the velocity while keeping U and x 
constant; 

(iij to produce, for a series of ditFerent vciocities, tiitcd patterns invading the  
whole sample by applying sullicicntly large velocity jumps, and thus to determine 
upper bounds for the ratio of the critical wavelength of the tilted pattern and the 
selected wavelength (at the final velocity) of the underlying symmetric pattern. 

The first experiment would check the prediction of constant tilt angle [ l l ,  161 un- 
der the described conditions. The second experiment would check the new prediction 
(not made previously) that the discussed wavelength ratio increases with decreasing 
velocity and hence the scaling function is non-universal. 

Finally, we mention that even the behaviour of the selected wavelength in tilted 
growth can be predicted for a constant ratio of the thermal gradient and the velocity 
and that an experimental determination of the corresponding scaling function would 
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constitute an important step towards a theoretical understanding of the selection 
criterion. 
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Appendix A. Convergence considerations 

lb show the uniform convergence of I,, and I,, we use the representation ([26],  
no 8.432,9) 

exp{-z-} 

d F T 7  
l i , ( z r )  = - z Aw d t  t 2  

with x = p or z = IyI and t = p.  
Noting that 

where obviously 0 < w < 1 for all allowed mlues of 4, we can estimate an upper 
bound for the factor outside the brackets in the integrand of expression (3.9), defining 
12  > 

Furthermore, we will need 

We then split I,, according to 
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Clearly, we need to consider I;!,) and 1;;) only to show the uniform convergence, and 
since the case of negative y is the most dangerous situation, we look at 1;:) explicitly. 
Introducing 

we can write 

where we have performed an integration by parts. %cause y p  is the averagc of 
gP( l j  Over one period, the integral of g p ( t )  - y p  over one period vanishes. This 
means that G p ( y )  is a bounded function Vy E R. Hence the second summand of 
(A.7) is zero ( G P ( - R l )  = 0) and using (A.3) and (A4) we get 

Tne quantity in braces inside the integrai is a bounded function ( L ; ( y j  is periodic 
and A< is also bounded), with an upper bound that can be chosen independent 
of P Cor P E [0, Po] (the bound may depend on Po). Since the integral of l /p2  
is convergent at infinity, this shows the uniform convergence of I , ,  at the lower 
integration bound (-a..). An entirely analogous proof can be given for the upper 
b u n d ,  which completes the demonstration of uniform convergence for 12a, 

Next we consider 12b. Here we use the  inequalities (A.2) and 

in the following estimate 

- (exp { - P & q  cxp { -ly,J..l;.}) 
m exp { - ~ y -  l y l & ' T F }  

= d i t 2  dFT5 
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6 lm d t  t Z  

1 p2- y2 1 AC2 1 - - - ( p -  1yl)- - -- = -- 
WZP2 P +  I Y I  W 2 P 2  P t  IYlP2P2 

(A '0) 

which shows that, for large IyI, the factor in I,, that multiplies yap  is of order 
l/lyI3. Hence the integrand can again be atimated uniformly hy a constant times 
l / y 2  for large arguments and the proof of uniform convergence is straightfonvard. 

A convenient way to calculate I,, is to use the integral 

which leads to 

valid for a > R(b). This is formula (3.15), which allows direct evaluation of I,<. 
The integral ( A l l )  was previously derived by ourselves in the context of the sum 
rule for tilted growth [16]. Since this derivation is somewhat tedious, it shall not he 
reproduced here. Instead (to make this paper self-contained) we outline an alternative 
approach that the reader can check easily. From formula 6.611,9 in [26] 

(valid for R ( a  4- b )  > 0) and using COS-' x + cos-l(-z) = n we obtain 

Here we can differentiate with respect to a and integrate on b to find 

where we have employed x / I x  = IzI/z for real z. Making the integral on the left- 
hand side a principal value integral (with the singularity at z = 0), we can drop the 
second summand of the integrand, which is an odd function, and we recover (3.15). 
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I I 

Flgun 9. Integration contour used in the derivation 
r, r@ of equation (3.41). 

Appendix B. Global mass conservation in tilted eutectic growth 

In the frame moving with the interface (which for tilted patterns is no longer identical 
with the laboratoly frame), the general form of the continuity equation, d i d  for both 
bulk and interface, reads 

ac ac ac 
ai aZ a x  V- - V t a n  4- = -Oj _ -  

where j, is the mass current. In the liquid, where j, = -DVc,  the stationary version 
of this equation reduces to equation (2.1). At the liquid-solid boundary, equation 
(2.6) may be derived from it. 

We now integrate equation (B.l) over the domain 52, delimited by the contour 
To = re+fTp+~II1+~,+rllZ which is depicted in figure 9 and whose bottom pieces 
re and To lie inside the solid. Since we consider stationary solutions, &/at equals 
zero. The remaining time-independent integrals can be transformed into contour 
integrals (e, and e, denote unit vectors in the z and z directions): 

= - l, d T ( n ,  + t a n + n , )  c 

The minus sign appears on the right-hand sides, because n is an inward normal with 
respect to R,. Owing to periodicity, the contributions from rill and rli2 cancel in 
both contour integrals. 

In the second integral, j, = 0 in the solid as well as a t  infinity, therefore this 
integral vanishes altogether (there is no net flux out of the periodicity wlume). 

The first integral can be transformed into B sum of two integrals on the interval 
[0, A], with d z  = n z d T  for r, and r p  and d z  = -n ,dT  for r,, where in addition 
nz = 0. Hence, we obtain in units reduced by X 



3236 

where cso and c , ~  stand for the concentrations in the a and p phases respectively. 

integrals containing q, and cp on the right-hand side, we arrive at 
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Subtracting e, on both sides of the equation and subtracting and adding certain 

= e  

c , - c e = l  dz(1-C, tan+b)(c , , -c , )+ d z ( l - C , t a n 4 ) ( c , p - c p )  

which on division by Ac becomes 

U= = /"'dz (1  - C, t a n b ) u s ,  + /' d z  (1 - C, t a n  +)U,;: 

Jo  J=. 
1 + ,{.,(CO - c.) t (1 

+(CO -C , )~ .~~[C( . , ) -C(O) I}  (B.5) 

- c , )  

where we have used periodicity (< ( I )  = ((0)) and defined us,  = (cs ,  - c , ) /Ac  
(i = a,@). An immediate consequence of this definition is us ,  = k,u(z ,C(z)) .  
Furthermore, the brace expression in (B.5) can be simplified to 

the definitions of k( I) and i~( z) have bcen given in section 2. Equation (B.7), which 
is identical to equation (3.41) as we shall see shortly, is the desired I'eSult, showing 
that (U, + c 0 ) / P  does not diverge as 1 / P  but is of order 1 (see equation (3.36)). 

--.. Figure 10. Relation between re and the volume 
lraclion 7 of the a phase (the lnple point to the 
left of Ihc a phase has z = 0) 1-7) 
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In order to make the connection between x, and the volume fraction 1) of the 
01 phase, take a look at figure 10. Obviously, 1) is given by the length of the segment 
of a parallel to the c axis cutting through the a phase, since we have normalized the 
wavelength to one. Here, ze is not identical with this length whenever the two triple 
points are not at the Same height, i.e. whenever C(0) # c(x,).  Now it is elementary 
geometry to demonstrate from the figure that q = 2, + t an  4 [<(a) - <(ze)], which 
is identical to equation (3.37). This completes the proof of equation (3.41). 
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